Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 1, 2026
-
Systems thinking is a skill that enables students to grapple with complex problems, often to which there is no clear problem definition or solution, there are many stakeholders, and there are many systems involved (e.g. sociotechnical or socioecological systems). Fostering the development of systems thinking skills is crucial as the problems students encounter in their lives, and in formal and informal educational settings, are increasingly complex. Ongoing research points to the need for more domain-general tools to assess systems thinking in a variety of K-12 settings. Many existing tools or methods used to assess systems thinking in K-12 are often domain specific (e.g. the water cycle in environmental science) and do not always transfer well to more complex problems across content areas. Furthermore, grounding the development of systems thinking skills in the locally relevant contexts that inform and affect students' day-to-day lives also offers the opportunity for students to engage in problems they find interesting and in which they may connect more deeply. This work-in-progress paper presents the development of a general tool informed by existing research in systems thinking and pedagogical practices in K-12 settings. The initial tool development is based on an existing published tool that has been used in undergraduate settings that challenges students to consider an ill-structured problem based on a real world scenario, in which a rubric was defined and applied to measure different systems thinking competencies. The existing tool measures students' ability to identify various contextual and technical aspects of a problem, to identify various stakeholders and stakeholder needs, and to identify short-term goals, long-term goals, and unintended consequences of potential solutions. Knowledge and experience from the development of this tool will be used to pilot an assessment with K-12 students to measure their systems thinking skills in problems that are relevant to them and their experiences.more » « less
-
Broadening participation in the skilled technical workforce is a national priority given strong evidence of growing critical vacancies in engineering coupled with the urgent need for this workforce to better reflect the rich diversity of the nation. Scholars and activists often call for increased focus on education access, quality, and workforce development among rural Appalachian communities, noting that students from these communities are under-represented in higher education generally, and engineering careers specifically. Investing in preK-12 education, engaging youth as valued members of their communities, and cultivating workforce opportunities such as in advanced manufacturing have all been highlighted by the Appalachian Regional Commission as vital to strengthening economic resilience. However, scaffolding engineering and technical career pathways for Appalachian youth at scale in the context of broader systemic issues is challenging. Past research on the career choices of Appalachian youth show that sparked interest alone was not sufficient to consider engineering careers. Research on the sustained development of interest in engineering highlights rich networks of formal and informal experiences as catalysts or supportive infrastructure. Yet, access to such opportunities varies greatly. School systems often lack the necessary personnel, money, or space to offer these experiences, and, even if opportunities are available, often only a small subset of students may be able to participate. Further, common views of what engineering work is and who can do it are narrow, biased, and exclusive. This CAREER project has focused on three areas of research. The first area, focused on school-industry partnerships through COVID-19 in the region, highlighted the importance of rich partnerships, resilient stakeholders, and innovative contexts to persist throughout the COVID-19 pandemic. This is particularly pertinent to partnerships and collaboration, sustainability of these collaborations, and programming in the context of STEM skilled technical workforce development programs in rural places. The second area of research, focused on developing a conceptual framework for engineering education research and engagement in rural places, highlighted the importance of place, individual student and community assets, and leveraging these things to provide context and meaning in a decontextualized K-12 curriculum. Finally, the third research area, focused on systematically reviewing literature related to the assessment of systems thinking in K-12 education, highlighted the lack of comprehensive assessment tools that can apply across many educational disciplines but particularly in areas as it relates to socio-technical problems. Together, these three research areas ultimately seek to inform broader aspects of K-12 education, such as career and technical education, issues related to rural education, and ultimately focusing on students’ ability to handle complex problems in their communities or other contexts with systems thinking.more » « less
-
Abstract Multi‐institutional educational partnerships are a promising approach to developing the skilled technical workforce. Inexorably, the ability to maintain such partnership networks that support skilled technical workforce education was disrupted by COVID‐19. The purpose of this study is to explore Southwest Virginia's science, technology, engineering, and mathematics (STEM)‐focused multi‐institutional partnership networks, to inventory the disruptive impacts of COVID‐19, and to identify how partnership stakeholders navigated these challenges to prepare students for the skilled technical workforce. This work presents a single‐case study design, highlighting the evolving landscape of STEM workforce education partnership networks in Southwest Virginia throughout the pandemic. The team conducted interviews with 19 regional stakeholders focused on the participants' role throughout the pandemic, barriers to STEM workforce education presented by public health and economic factors, and innovative strategies to sustain and expand partnership networks through COVID‐19. Two key themes emerged from this study: successful partners maintained network connections through adaptive interactions and actors within the network served as brokers to leverage their connections and expand partnerships in the face of adversity. By taking a contextual view of the role of partnership networks in creating equitable STEM workforce pathways during COVID‐19, we develop rich insights into partnership formation, collaboration, resource allocation, and programming amidst challenges to their success.more » « less
-
null (Ed.)K-12 teachers serve a critical role in their students’ development of interest in engineering, especially as engineering content is emphasized in curriculum standards. However, teachers may not be comfortable teaching engineering in their classrooms as it can require a different set of skills from which they are trained. Professional development activities focused on engineering content can help teachers feel more comfortable teaching the subject in their classrooms and can increase their knowledge of engineering and thus their engineering teaching self-efficacy. There are many different types of professional development activities teachers might experience, each one with a set of established best practices. VT PEERS (Virginia Tech Partnering with Educators and Engineers in Rural Communities) is a program designed to provide recurrent hands-on engineering activities to middle school students in or near rural Appalachia. The project partners middle school teachers, university affiliates, and local industry partners throughout the state region to develop and implement engineering activities that align with state defined standards of learning (SOLs). Throughout this partnership, teachers co-facilitate engineering activities in their classrooms throughout the year with the other partners, and teachers have the opportunity to participate in a two-day collaborative workshop every year. VT PEERS held a workshop during the summer of 2019, after the second year of the partnership, to discuss the successes and challenges experienced throughout the program. Three focus groups, one for each grade level involved (grades 6-8), were held during the summit for teachers and industry partners to discuss their experiences. None of the teachers involved in the partnership have formal training in engineering. The transcripts of these focus groups were the focus of the exploratory qualitative data analyses to answer the following research question: How do middle-school teachers develop teaching engineering self-efficacy through professional development activities? Deductive coding of the focus group transcripts was completed using the four sources of self-efficacy: mastery experience, vicarious experience, verbal persuasion and physiological states. The analysis revealed that vicarious experiences can be particularly valuable to increasing teachers’ teaching engineering self-efficacy. For example, teachers valued the ability to play the role of a student in an engineering lesson and being able to share ideas about teaching engineering lessons with other teachers. This information can be useful to develop engineering-focused professional development activities for teachers. Additionally, as teachers gather information from their teaching engineering vicarious experiences, they can inform their own teaching practices and practice reflective teaching as they teach lessons.more » « less
An official website of the United States government
